Monatshefte für Chemie 99, 616-624 (1968)

HMO-Berechnungen an disubstituierten trans-Stilbenen

Von

L. Klasinc* und H. Güsten

Institut für Strahlenchemie, Kernforschungszentrum Karlsruhe

Mit 4 Abbildungen

(Eingegangen am 6. September 1967)

Die Ergebnisse der HMO-Berechnungen an 10 disubstituierten *trans*-Stilbenen werden mit den experimentellen Daten der kernmagnetischen Resonanzspektren verglichen. Die π -Elektronendichten stehen in direktem Zusammenhang mit der chemischen Verschiebung der Protonen.

The results of HMO-calculations on 10 disubstituted *trans*stillenes are compared with NMR-data. A linear dependence of the proton chemical shifts with the π -electron density is obtained.

In einer früheren Mitteilung¹ konnten wir zeigen, daß eine gute Linearität zwischen der chemischen Verschiebung der Protonen monosubstituierter *trans*-Stilbene und den berechneten π -Elektronendichten besteht. Vorliegende Arbeit untersucht die Zusammenhänge von quantenmechani-

Ta	belle	1.	Benutz	zte l	Paramet	cer i	ür	HMO-	Rechn	ungen
----	-------	----	--------	-------	---------	-------	----	------	-------	-------

 X	${ m NH}_2$	$N(CH_3)_2$	OH	OCH3	Cl	NO_2
h_{X}	1,5	1,0	2,0	1,9	2,0	$egin{array}{ll} h_{ m C} &= 0,25 \ h_{ m N} &= 1,8 \ h_{ m O} &= 1,5 \end{array}$
$k_{\mathbf{CX}}$	0,8	0,8	0,8	0,8	0,4	$k_{ m CN}=0,9$ $k_{ m NO}=1.7$

* Gast aus dem Institut "Ruder Bošković", Zagreb, Jugoslawien.

¹ H. Güsten und L. Klasinc, Tetrahedron Letters 1967, 2923.

Tabell	2. π-Elektronen	dichte (ATC	JM) und Bindun	gsordnung ((BOND) disubstit	uierter t	rans-Stilbene
p-Din n	ıethylamino-p'- itrostilben	p-Amino	-p'-nitrostilben	p-Hydre s	oxy-p'-nitro- tilben	p-Chlo	r-p'-nitrostilben
MOTA	(1) = 1,0133	ATOM	(1) = 1,0113	ATOM	(1) = 1,0102	ATOM	(1) = 1,0074
BOND	(1, 2) = 0.6960	BOND	(1,2)=0.6952	BOND	(1, 2) = 0.6948	BOND	(1, 2) = 0.6940
UND8.	(1, 6) = 0.5904	BOND	(1, 6) = 0.5914	BOND	(1, 6) = 0.5919	BOND	(1,6)=0,5928
BOND	(2, 3) = 0.9409 (2, 3) = 0.6130	BOND	(2, 3) = 0.9407 (2, 3) = 0.6137	BOND	(2) = 0.9406 (2, 3) = 0.6141	BOND	(2) = 0.9404 (2, 3) = 0.6148
ATOM	(3) = 1,1084	ATOM	(3) = 1,1065	ATOM	(3) = 1,1054	MOTA	(3) = 1,1029
BOND	(3,15)=0,3001	BOND ((3, 15) = 0.2993	BOND (5	(1,15) = 0,2988	BOND	(3, 15) = 0.2978
ATOM	(6) = 0.9593	ATOM	(6) = 0.9593	ATOM	(6) = 0.9593	ATOM	(6) = 0.9596
BOND	(6, 7) = 0.4451	BOND	(6, 7) = 0,4429	BOND	(6, 7) = 0.4418	BOND	(6, 7) = 0.4398
ATOM	(7) = 1,0362	ATOM	(7) = 1,0278	ATOM	(7) = 1,0229	ATOM	(7) = 1,0105
BOND	(7, 8) = 0.8055	BOND	(7, 8) = 0.8092	BOND	(7, 8) = 0.8109	BOND	(7, 8) = 0.8137
ATOM	(8) = 0.9639	ATOM	(8) = 0.9647	ATOM	(8) = 0.9655	ATOM	(8) = 0.9685
BOND	(8, 9) = 0.4454	BOND	(8, 9) = 0.4406	BOND	(8, 9) = 0.4382	BOND	(8, 9) = 0.4343
ATOM	(9) = 1,0406	ATOM	(9) = 1,0308	ATOM	(9) = 1,0247	ATOM	(9) = 1,0070
BOND	(9, 10) = 0.5899	BOND (9,10)=0.5940	BOND (9	(0, 10) = 0.5961	BOND	(9, 10) = 0.5995
ATOM	(10) = 0.9870	ATOM	(10) = 0.9877	ATOM	(10) = 0.9884	ATOM	(10) = 0.9918
BUND ((10, 11) = 0.6970	BOND (1	0, 11) = 0,6913	BOND (10	(, 11) = 0.6883	BOND	(10, 11) = 0.6830
ATOM	(11) = 1,0561	ATOM	(11) = 1,0454	ATOM	(11) = 1,0378	ATOM	(11) = 1,0100
BUND	(11, 12) = 0.6093	BOND (1	1,12)=0.6238	BOND (11	(, 12) = 0.6326	BOND ((11, 12) = 0.6508
ATOM	(12) = 0.9417	ATOM	(12) = 0.9404	ATOM	(12) = 0.9424	ATOM	(12) = 0.9797
BUND	(12, 18) = 0.3682	BOND (1	2, 18) = 0,3027	BOND (12	2, 18) = 0.2563	BOND ((12, 18) = 0.1262
ATOM	(15) = 1,0743	ATOM	(15) = 1,0739	ATOM	(15) = 1,0738	ATOM	(15) = 1,0734
BUND (15, 16) = 0.6654	BOND (1	5, 16) = 0,6658	BOND (15	(, 16) = 0.6660	BOND ((15, 16) = 0.6664
ATOM	(16) = 1,5088	ATOM	(16) = 1,5083	ATOM	(16) = 1,5081	ATOM	(16) = 1,5075
ATOM	(18) = 1,8634	ATOM	(18) = 1,9099	ATOM	(18) = 1,9361	ATOM	(18) = 1,9839

L. Klasinc u. a. : HMO-Berechnungen . . .

L. Klasinc und H. Güsten:

[Mh. Chem., Bd. 99

p-Methoxy-p'-ni stilben	tro- m	-Methoxy-p'-nitro- stilben	m-Me	ethoxy-m'-nitro- stilben
$\begin{array}{c} p\text{-Methoxy-p'-ni}\\ stilben\\ \hline\\ \hline\\ ATOM (1) =\\ BOND (1, 2) =\\ BOND (1, 6) =\\ ATOM (2) =\\ BOND (2, 3) =\\ ATOM (3) =\\ BOND (2, 3) =\\ ATOM (3) =\\ BOND (3, 15) =\\ ATOM (6) =\\ BOND (6, 7) =\\ ATOM (6) =\\ BOND (6, 7) =\\ ATOM (7) =\\ BOND (7, 8) =\\ ATOM (7) =\\ BOND (7, 8) =\\ ATOM (8) =\\ BOND (8, 9) =\\ ATOM (9) =\\ BOND (8, 9) =\\ ATOM (9) =\\ BOND (9, 10) =\\ ATOM (10) =\\ BOND (10, 11) =\\ ATOM (11) =\\ BOND (11, 12) =\\ ATOM (12) =\\ BOND (12, 18) =\\ ATOM (15) =\\ BOND (15, 16) =\\ ATOM (18) =\\ \end{array}$	tro- m 1,0104 ATC 0,6949 BON 0,5918 BON 0,9406 ATC 0,9406 ATC 0,9406 ATC 0,05918 BON 0,9406 ATC 0,9406 ATC 0,2989 BON 0,420 BON 0,4420 BON 0,9653 ATC 0,9653 ATC 0,9653 ATC 0,9653 ATC 0,9653 ATC 0,9883 BON 0,6887 ATC 0,9811 ATC 0,9419 BON 0,6659 ATC 1,0738 BON 0,6659 ATC 1,5081 BON 0,6659 ATC 1,9318 BON	$\begin{array}{llllllllllllllllllllllllllllllllllll$	M-Ma ATOM BOND BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM BOND ATOM	$\begin{array}{c} (1) = 0.9328\\ (1, 2) = 0.6419\\ (1, 6) = 0.6088\\ (2) = 1.0933\\ (2, 3) = 0.6194\\ (2, 15) = 0.2874\\ (3) = 0.9390\\ (3, 4) = 0.6651\\ (4) = 1.0030\\ (4, 5) = 0.9540\\ (5, 6) = 0.9540\\ (5, 6) = 0.9540\\ (5, 6) = 0.9540\\ (5, 6) = 0.9540\\ (5, 6) = 0.9540\\ (5, 6) = 0.9540\\ (5, 6) = 0.9597\\ (6) = 1.0020\\ (6, 7) = 0.4302\\ (7) = 0.9990\\ (7, 8) = 0.8207\\ (8) = 1.0011\\ (8, 9) = 0.4305\\ (9) = 0.9985\\ (9, 10) = 0.5992\\ (9, 14) = 0.6054\\ (10) = 1.0287\\ (10, 11) = 0.6784\\ (11) = 0.9977\\ (11, 12) = 0.6611\\ (12) = 1.0397\\ (12, 13) = 0.6343\end{array}$
	BON ATC ATO	$ \begin{array}{ll} {\rm ND} \ (15,16) = 0,6665 \\ {\rm M} \ \ (16) = 1,5074 \\ {\rm M} \ \ (18) = 1,9367 \end{array} $	ATOM BOND ATOM ATOM BOND ATOM ATOM	$\begin{array}{l} (13) = 0,9550\\ (13, 14) = 0,6577\\ (13, 18) = 0,2552\\ (14) = 1,0442\\ (15) = 1,0696\\ (15, 16) = 0,6709\\ (16) = 1,5029\\ (18) = 1,9367 \end{array}$

schen Daten mit den Ergebnissen der kernmagnetischen Resonanz von disubstituierten trans-Stilbenen².

Ergebnisse und Diskussion

Die π -Elektronenverteilung, die freie Valenz, die *Wheland*schen π -Lokalisierungsenergien und die Superdelokalisierbarkeiten für die disubstituierten *trans*-Stilbene haben wir mittels der einfachen HMO-

² H. Güsten und M. Salzwedel, Tetrahedron 23, 173 (1967).

H. 2/1968]

p-Din 1	nethylamino-m'- nitrostilben	p-Nitrostilben	p,p'-Dinitrostilben
АТОМ	(1) = 0,9398	ATOM $(1) = 1,0065$	ATOM $(1) = 1,0000$
BOND	(1, 2) = 0.6421	BOND $(1, 2) = 0,6937$	BOND $(1, 2) = 0,6924$
BOND	(1, 6) = 0,6078	BOND $(1, 6) = 0.5931$	BOND $(1, 6) = 0,5936$
ATOM	(2) = 1,0932	ATOM $(2) = 0.9404$	ATOM $(2) = 0,9403$
BOND	(2, 3) = 0,6193	BOND $(2, 3) = 0,6151$	BOND $(2, 3) = 0,6163$
BOND	(2, 15) = 0,2874	ATOM $(3) = 1,1020$	ATOM $(3) = 1,0963$
ATOM	(3) = 0,9457	BOND $(3, 15) = 0,2975$	BOND $(3, 15) = 0,2956$
BOND	(3, 4) = 0,6648	ATOM $(6) = 0,9597$	ATOM $(6) = 0,9608$
ATOM	(4) = 1,0029	BOND $(6, 7) = 0.4391$	BOND $(6, 7) = 0.4381$
BOND	(4, 5) = 0,6757	ATOM $(7) = 1,0062$	ATOM $(7) = 0,9767$
ATOM	(5) = 0,9611	BOND $(7, 8) = 0.8145$	BOND $(7, 8) = 0,8118$
BOND	(5, 6) = 0,5959	ATOM $(8) = 0,9696$	ATOM $(15) = 1,0728$
ATOM	(6) = 1,0011	BOND $(8, 9) = 0,4332$	BOND $(15, 16) = 0,6673$
BOND	(6, 7) = 0,4324	ATOM $(9) = 1,0009$	ATOM $(16) = 1,5064$
ATOM	(7) = 1,0300	BOND $(9, 10) = 0,6005$	
BOND	(7, 8) = 0.8148	ATOM $(10) = 0,9931$	
ATOM	(8) = 0,9944	BOND $(10,11) = 0,6815$	
BOND	(8, 9) = 0,4394	ATOM $(11) = 1,0001$	
ATOM	(9) = 1,0401	BOND $(11, 12) = 0,6563$	
BOND	(9, 10) = 0,5926	ATOM $(12) = 0,9934$	
ATOM	(10) = 0,9939	ATOM $(15) = 1,0733$	
BOND	(10, 11) = 0,6947	BOND $(15, 16) = 0,6665$	
ATOM	(11) = 1,0566	ATOM $(16) = 1,5074$	
BOND	(11, 12) = 0,6114		
ATOM	(12) = 0,9482		
BOND	(12, 18) = 0,3631		
ATOM	(15) = 1,0696		
BOND	(15, 16) = 0,6709		
ATOM	(16) = 1,5029		
ATOM	(18) = 1.8672		

Methode berechnet³. Der Einfluß der verschiedenen Heteroatome der Substituenten X bzw. deren Coulomb-Integral α_X und Austausch-Integral β_{CX} wurde durch die Parameter h_X und k_{CX} in den Beziehungen $\alpha_X = \alpha_C + h_X \beta_{CC}$ und $\beta_{CX} = k_{CX} \beta_{CC}$ berücksichtigt.

Die benutzten Parameter für die Substituenten sind zum Teil von Streitwieser⁴, zum Teil von Polansky⁵ mitgeteilt worden.

Die berechneten π -Elektronendichten und Bindungsordnungen der 10 disubstituierten trans-Stilbene sind in Tab. 2 aufgeführt.

 $^{^3\,}$ Die Rechnungen wurden mit der IBM 7074 durchgeführt. Das Rechenprogramm wurde selbst entwickelt.

⁴ A. Streitwieser, jr., Molecular Orbital Theory for Org. Chemists, Wiley, New York 1961.

⁵ P. Schuster und O. E. Polansky, Mh. Chem. 96, 396 (1965).

Die Abb. 1 zeigt anschaulich, wie bei den p,p'-disubstituierten Stilbenen die π -Elektronenverteilung bei Konstanthalten eines Substituenten (NO₂) durch den anderen Substituenten (X) beeinflußt wird.

Eine stärkere Ladungsverschiebung durch den Substituenten X liegt nur an den Stellen 7, 9, 11 (13) und 12 vor. Da diese Stellen beim p-Nitrostilben keine Ladungsverschiebung zeigen, d. h. praktisch die Ladung 1,0

Abb. 1. π -Elektronenverteilung im Grundzustand des p-Nitro-p'-dimethylamino-stilbens (I), des p-Nitro-stilbens (II) und p,p'-Dinitro-stilbens (III)

aufweisen, ist die durch den Substituenten X bewirkte Ladungsverschiebung so, als ob keine Nitro-Gruppe im Stilben-Molekül vorhanden wäre. Beim Konstanthalten eines anderen Substituenten statt NO₂ würde sich dasselbe Bild ergeben. Diese Tatsache läßt die gleiche Abhängigkeit der chemischen Verschiebung der Protonen disubstituierter Stilbene (Stellung 7 und 11) von der π -Elektronendichte erwarten, wie wir sie bei den monosubstituierten p-Stilbenen gefunden haben.

Ein meta-Substituent hat im Stilben-Molekül praktisch keinen Einfluß auf die π -Elektronen der C=C-Doppelbindung und den benachbarten Ring¹. Da ein para-Substituent am benachbarten Ring wiederum nur diesen und die C=C-Doppelbindung beeinflußt, wird in p,p'-, m,p'- und m,m'-disubstituierten Stilbenen die π -Elektronendichte an den verschiedenen Positionen jeweils nur durch einen Substituenten bestimmt. Dies ist anschaulich aus Abb. 3 ersichtlich.

Abb. 3. π-Elektronenverteilung im Grundzustand des p-Nitro-p'-methoxystilbens, des p-Nitro-m'-methoxy-stilbens und des m-Nitro-m'-methoxystilbens. An den beiden olefinischen C-Atomen (Stellung 7 und 8) sind die chemischen Verschiebungen eingezeichnet²

Die eingezeichneten chemischen Verschiebungen der olefinischen Protonen zeigen, daß vom unsubstituierten Stilben ($\tau = 2,89$ ppm, q = 1,0) verschiedene Werte nur die olefinischen Protonen zeigen, die sich in β -Stellung zum p-substituierten Ring befinden. Nur diese Stellen weisen eine von 1,0 verschiedene π -Elektronendichte auf.

Abb. 4. Korrelation der π -Elektronendichte q mit der chemischen Verschiebung τ der aromatischen Protonen des *trans*-m-Nitro-m'-methoxy-stilbens. Die τ -Werte stammen aus²

Abb. 3 und die lineare Abhängigkeit der chemischen Verschiebung mit der π -Elektronendichte zeigt uns ferner, daß die früher von uns getroffene Zuordnung der olefinischen Protonen beim p-Nitro-m'-methoxy-stilben² (Stellung 7 und 8) umgetauscht werden muß. In Abb. 3 ist diese neue Zuordnung (Vertauschung der H_c- und H_d-Werte aus Tab. 4 in²) berücksichtigt worden.

Wir nehmen an, daß der gute Zusammenhang von π -Elektronendichte und chemischer Verschiebung im wesentlichen durch Ausschalten von Anisotropie-Effekten durch Vergleich topologisch gleicher Stellen von Stilben-Derivaten zustande kommt⁶. Deswegen untersuchten wir, in-

⁶ J. A. Pople, W. G. Schneider und H. J. Bernstein, High-resolution Nuclear Magnetic Resonance, McGraw-Hill, New York 1959.

wieweit dieser Zusammenhang auch beim Vergleich topologisch verschie-

dener Stellen innerhalb eines Moleküls erfüllt ist.

Als Beispiel zeigt Abb. 4 den Zusammenhang zwischen der berechneten π -Elektronendichte und der gemessenen chemischen Verschiebung für die acht aromatischen Protonen des m-Nitro-m'-methoxy-stilbens.

Die Abweichung von der Linearität beträgt + 0,1 ppm (10 Hz). Die chemische Verschiebung der Protonen disubstituierter Stilbene zeigt eine viel größere Lösungsmittelabhängigkeit als die der monosubstituierten Stilbene⁷. Wir haben deshalb versucht, die Abweichungen von der Linearität durch Lösungsmitteleinflüsse zu erklären. Die Idee war, durch Aufnahme der KMR-Spektren in verschiedenen Lösungsmitteln für jedes Proton durch Extrapolation auf die "Gasphase" eine chemische Verschiebung zu erhalten, die besser mit den für das nicht solvatisierte Molekül berechneten π -Elektronendichten übereinstimmt. Die KMR-Untersuchungen wurden nicht am m-Nitro-m'-methoxy-stilben, sondern an dem polareren p-Nitro-p'-methoxy-stilben durchgeführt. Die chemische Verschiebung der Protonen des p-Nitro-p'-methoxy-stilbens⁸ in fünf verschiedenen Lösungsmitteln zeigt eine gute Linearität mit der Molekularpolarisation $P_M = \frac{\varepsilon - 1}{\varepsilon + 2} \cdot \frac{\tilde{M}}{d}$ (ε = Dielektrizitätskonstante, M = Molgewicht, d = Dichte). Mit dem von Buckingham⁹ empfohlenen Lösungsmittel-Parameter $\frac{\epsilon-1}{\epsilon+1}$ wird keine gute Korrelation mit der chemischen Verschiebung erhalten.

Lösungsmittel	\mathbb{P}_M	\mathbf{H}_{a}	$\begin{array}{c} { m Chemisch} \\ { m H}_b \end{array}$	e Verscl H _c	$\operatorname{hiebung}_{\mathbf{H}_d}$	τ (ppm) He	H_{f}
CCl ₄	28,3	3,17	2,60	2,86	3,07	2,46	1.84
Äther	34,0	3,10	2,49	2,68	2,94	2,34	1,81
CD_3OD	41,8	3,06	2,53	2,63	2,85	2,28	1,81
Acetonitril	48,7	3,00	2,38	2,55	2,82	2,25	1,76
Aceton	64,1	2,93	2,19	2,41	2,68	2,09	1,69
τ extrapoliert		3,29	2,93	3,00	3,23	2,75	1,96

Tabelle 3. Lösungsmittelabhängigkeit der chemischen Verschiebung der Protonen des *trans*-p-Nitro-p'-methoxy-stilbens in fünf verschiedenen Lösungsmitteln

⁷ H. Hüther, persönliche Mitteilung.

 $^{\rm 8}\,$ Die KMR-Spektren wurden mit dem VARIAN-HA 100 bei 30° C aufgenommen.

⁹ A. D. Buckingham, Canad. J. Chem. 38, 300 (1960).

Monatshefte für Chemie, Bd. 99/2

Die Werte für ε und d wurden der Literatur entnommen¹⁰.

Die für die einzelnen Protonen des p-Nitro-p'-methoxy-stilbens im τ/P_M -Diagramm erhaltenen Geraden zeigen eine unterschiedliche Steigung, deren Ordinatenabschnitte die neuen für die "Gasphase" extrapolierten τ -Werte liefern. Trägt man die neuen extrapolierten chemischen Verschiebungen gegen die errechneten τ -Elektronendichten auf, so erhält man jedoch keine Verbesserung der Linearität. Aus diesem Befund schließen wir, daß Anisotropie-Effekte für die Abweichung von der Linearität in Abb. 4 verantwortlich sind.

Ein Korrelationsversuch der chemischen Verschiebung mit quantenmechanischen Reaktivitätsindices¹¹, wie die *Wheland*schen π -Lokalisierungsenergien, den freien Valenzen und den Superdelokalisierbarkeiten ergaben bei den substituierten Stilbenen weder im Einzelmolekül, noch in der substituierten Reihe einen Zusammenhang.

Wir danken Herrn Prof. Dr. O. E. Polansky für wertvolle Anregung, Herrn Priv. Doz. Dr. D. Schulte-Frohlinde für die Förderung dieser Arbeit.

¹⁰ J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Interscience, New York (1960).

¹¹ J. Kuthan, Z. Chem. 6, 150 (1966).